|国家预印本平台
首页|基于RBF神经网络的非线性回归模型

基于RBF神经网络的非线性回归模型

Based on RBF neural network of nonlinear regression model

中文摘要英文摘要

RBF神经网络即径向基函数神经网络是一种高效的前馈式神经网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。同时,它也是一种可以广泛应用于模式识别、非线性函数逼近等领域的神经网络模型。本文利用径向基RBF神经网络的非线性回归特性对已知函数进行模拟仿真,通过原函数输出结果与经过径向基RBF神经网络非线性回归模型仿真的函数结果进行比较,得出设计模型可靠良好的性能。

RBF neural network namely radial basis function neural network is a kind of efficient feedforward neural network, it has the best approximation performance and global optimal characteristics than other prior to network ,it simple structure and training speed. Meanwhile, it is also a kind of can be widely used in pattern recognition, nonlinear function approximation and other areas of neural network model. This paper using the nonlinear regression characteristic of radial basis RBF neural network to simulation the known function . The design model has a reliable good performance to compared to the antiderivative output results between the result after radial basis RBF neural network nonlinear regression model simulation.

黄涛

计算技术、计算机技术

电路与系统RBF神经网络非线性回归

ircuits and systemsNeural networkNonlinear regression

黄涛.基于RBF神经网络的非线性回归模型[EB/OL].(2011-03-29)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/201103-1089.点此复制

评论