两类运动想象脑电识别中小波变换对信源适用状况的研究
Research on the Applicability of Wavelet Transform to Signal Source in Two Types of Motor Imagery EEG Identification
本文针对脑电信号的小波变换特征提取展开研究。小波变换技术需要在适合的条件下方可充分发挥其数据分析功效,脑电信号源的模式则是其中需要考虑的重要项目。本文以2003年、2005年国际脑机接口竞赛中两类运动想象脑电数据为素材,选择单通道脑电信号、双通道脑电信号、脑电信号功率等多种类型的信号为数据来源,以db基函数小波变换为分析工具,来验证小波变换技术的信号分析本领。研究发现,尽管通道数量的增加能有机会提高脑电识别效率,但不同的多通道信号不见得都适用于小波变换特征提取,因此需要考虑如何合理利用多通道信号源。此外,尽管信号功率对脑电识别是重要的数据源,但与小波变换过程似乎并不相融洽,导致识别效率降低。对于各种脑电信号模式,需要对其具体分析,研究影响小波变换特征提取的各种因素,以适当的方式使用小波变换,以期在适合的条件下充分发挥该技术的优势。
he paper studied the wavelet transform feature extraction of EEG signal. To exert its effects of data analysis, the technique of wavelet transform needs suitable conditions. Among them, the modes of EEG signal source is the important items to be considered. Based on the two types of motor imagery EEG data of the international BCI competitions, the research selected the single channel EEG signals, two-channel EEG signals, EEG signals power etc as data source, also selected the wavelet transform with db basis function as the analysis tool, to verify the signal analysis ability of the wavelet transform technique. The research found that, although increased channel amount can have the opportunity to improve the efficiency of EEG identification, not all kinds of multi-channel signals were applicable to wavelet transform feature extraction, therefore we need to consider how to use multi-channel signal source reasonably. Moreover, although the signal power can be the important data source to EEG identification, it seemed that such data source cannot get on well with the process of wavelet transform, hence, it led to the reduction of identification efficiency. To all kinds of EEG signal modes, we need to make detailed analysis, also study various factors which influence the feature extraction of wavelet transform, then use wavelet transform in proper way in order to give full play to the advantages of this technique in suitable conditions.
王海
生物科学现状、生物科学发展生物科学研究方法、生物科学研究技术电子技术应用
生物电气接口脑电小波变换
BEI (Biotic Electric Interface)EEG (electroencephalogram)wavelet transform
王海.两类运动想象脑电识别中小波变换对信源适用状况的研究[EB/OL].(2018-02-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201802-119.点此复制
评论