基于改进LOF的次声事件检测算法
Infrasound event detection algorithm based on improved LOF
针对当前广泛应用的PMCC算法存在的误检率高、鲁棒性差的问题,本文提出了一种新的次声事件检测算法FF-LOF。该算法基于机器学习中的离群点检测思路,通过分帧处理多通道波形数据,提取各帧的多种相关性特征,并使用主成分分析算法进行特征融合。接着,通过LOF算法检测各帧中提取的特征值中的离群点,进而确定次声事件的范围。本文使用真实监测站采集的次声数据作为背景,对比了FF-LOF算法与PMCC算法在多轮贝叶斯优化下的检测结果,实验结果表明所提出的算法具有更高的鲁棒性和更低的误检率。
his paper proposes a new infrasound event detection algorithm, FF-LOF, to address the issues of high false detection and poor robustness rate in the widely used PMCC algorithm. The algorithm is based on the idea of outlier detection in machine learning. It processes multi-channel waveform data by dividing frames, extracts multiple correlation features of each frame, and uses the principal component analysis algorithm for feature fusion. Then, the LOF algorithm is used to detect outliers within the extracted feature values of each frame, thereby determining the range of infrasound events. Real infrasound data collected from monitoring stations is used as the background for evaluation. The detection results of FF-LOF algorithm are compared with those of the PMCC algorithm under multiple rounds of Bayesian optimization. The experimental results demonstrate that the proposed algorithm exhibits higher robustness and lower false detection rate.
崔毅东、黄碧舟
地球物理学声学工程
次声事件检测算法LOFPCA主成分分析贝叶斯优化
infrasound event detection LOF PCA feature fusion Bayesian optimization
崔毅东,黄碧舟.基于改进LOF的次声事件检测算法[EB/OL].(2023-12-22)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202312-57.点此复制
评论