基于自动机器学习的航天测控网频谱分配方法
Spectrum Allocation Method for Aerospace TT&C Network Based on Automatic Machine Learning
本文提出了基于自动机器学习算法的频谱分配方法。基于贝叶斯优化搜索策略的自动机器学习算法在频谱识别上效果良好,本文根据其特点,将其运用在网络流量的预测上,进而完成了对航天测控网络通信模型的频谱分配的任务。实验结果表明,将自动机器学习算法运用于频谱分配上,网络资源利用率和网络带宽阻塞率等主要指标尽管略逊于人工调参的、识别效果已经很好的自适应路径空闲度算法,不过鉴于其可以免去繁重琐碎的人工调参工作,依然具有很强的实用性。
his paper proposes a spectrum allocation method based on automatic machine learning algorithms. The automatic machine learning algorithm based on Bayesian optimization search strategy has shown good performance in spectrum recognition. Based on its characteristics, this paper applies it to predict network traffic and thus completes the task of spectrum allocation for the communication model of the aerospace TT&C network. The experimental results show that applying automatic machine learning algorithms to spectrum allocation, although the main indicators such as network resource utilization rate and network bandwidth blocking rate are slightly inferior to the adaptive path idle degree algorithm with good recognition performance and manual parameter tuning, it still has strong practicality given that it can avoid the tedious and trivial manual parameter tuning work.
戴广才、张陆勇
通信航天
人工智能神经架构搜索频谱分配
artificial intelligenceneural architecture searchspectrum allocation
戴广才,张陆勇.基于自动机器学习的航天测控网频谱分配方法[EB/OL].(2023-05-22)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/202305-183.点此复制
评论