上海市光化学烟雾系统辨识实时迭代动力统计预报
he Dynamic Statistic Forcast Model of Photochemical Fog in Shanghai
本文选用动力—统计预报中常用的MOS(模式输出统计)预报方法及基于系统辨识理论的实时迭代预报模型建立上海市光化学烟雾动力统计预报模式,通过各因子与预报对象的相关性等特征筛选出三类预报因子:气象因子、污染物因子、光化学反应速率因子,通过上海市四个监测站的试预报,结果表明:系统辨识实时迭代动力统计预报模型对测站14时的24小时臭氧小时平均浓度等级预报准确率均大于88%,相关系数大于0.87。
he Dynamic Statistic Forcast Model of Photochemical Fog in Shanghai was established with MOS(Model output Statistics) and real-time iterative algorithm based on system identification,The forecast factors were selected according to the nalysis of relativity of the forcast object including weather factors、pollutant emission factors and rate of photochemical reaction, The results of a test 24-hours’ prediction.prove that the accuracy rate of classification forcast of hours’average thickness is above 88 percent and the relativity between forecast value and surveyed value is above 87 percent in Putuo、Nanhui、Dianshanhu and Xujiahui.
伍华平、李朝颐、束炯、顾莹
环境污染、环境污染防治
系统辨识 实时迭代 O3预报
System identificationReal-time iterative algorithmForcast of ozone
伍华平,李朝颐,束炯,顾莹.上海市光化学烟雾系统辨识实时迭代动力统计预报[EB/OL].(2008-04-16)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200804-575.点此复制
评论