|国家预印本平台
首页|基于深度学习的SLAM算法研究

基于深度学习的SLAM算法研究

Research on SLAM algorithm based on deep learning

中文摘要英文摘要

基于视觉的同步定位与地图构建(VSLAM)是目前三维重建和计算机视觉领域重要的研究方向,是自动驾驶与机器人等领域的核心技术。近年来深度学习技术突飞猛进,在目标跟踪、目标检测以及图像识别等领域展示了强大的能力。为探索深度学习方法在VSLAM领域的表现,本文使用基于深度学习的特征点和借鉴深度学习训练技巧的传统描述子提升SLAM的精度和鲁棒性。本文将视觉SLAM领域的经典框架ORB-SLAM2作为baseline,使用HFNet特征点和Box Average Difference(BAD)描述子提升SLAM系统的性能。在公开数据集上测试的结果表明,改进后的系统在保证实时性的同时,能显著提升系统的精度和鲁棒性,证明基于深度学习的网络及其先进技术相比传统方法的优越性。

Vision-based simultaneous localization and mapping (VSLAM) is currently an important research direction in the fields of 3D reconstruction and computer vision, and is the core technology in the fields of autonomous driving androbotics.In recent years, deep learning has advanced by leaps and bounds, demonstrating powerful capabilities in areas such as object tracking, object detection, and image recognition. In order to explore the performance of deep learning in the field of VSLAM, this paper uses feature points based on deep learning and traditional descriptors that draw on deep learning training techniques to improve the accuracy and robustness of SLAM.This paper takes ORB-SLAM2, a classical framework in the field of visual SLAM, as the baseline, uses HFNet feature and Box Average Difference (BAD) descriptor to enhance the performance of the SLAM. The results tested on publicly available datasets show that the improved system can significantly improve the accuracy and robustness of the system while ensuring real-time performance, demonstrating the superiority of deep learning-based networks and their advanced techniques over traditional methods.

张洪刚、王昊

计算技术、计算机技术电子技术应用

信号与信息处理同步定位与地图构建深度学习特征提取

Signal and Information ProcessingSLAMDeep LearningFeature Extraction

张洪刚,王昊.基于深度学习的SLAM算法研究[EB/OL].(2023-03-16)[2025-05-24].http://www.paper.edu.cn/releasepaper/content/202303-196.点此复制

评论