一种面向机器人机械系统的程式化动力学建模方法
programmed dynamic modeling method for robot mechanical system
针对机器人动力学模型复杂、冗余计算导致运算效率低的问题,提出一种程式化建模方法(PMM)。以六自由度斯坦福机械臂为例,利用该方法建立基于拉格朗日方程的动力学模型,按照“正向分析,逆序输出”的核心思想,重点分析模型递推过程;在验证模型正确性的基础上,比较使用PMM和未使用PMM 的常规拉格朗日方程所建立的斯坦福机械臂力学模型在计算机中的“尺寸”和运行时间等指标。实验结果表明,相对常规拉格朗日方法,由PMM 所建模型的复杂程度降低了67.6%,计算效率提高了66.3%;斯坦福机械臂为完整约束系统,将PMM推广到欠驱动非完整约束系统,采用与模型紧密相关的部分反馈线性化控制算法进行数值仿真和物理样机实验分析,验证了PMM 的可靠性和有效性,为不同类型的机器人提供了一种效率高、通用性强的动力学建模方法。
iming at the problem of low efficiency caused by complex and redundant calculation of robot dynamics model, aprogrammed modeling method is proposed. Taking the Stanford Arm with six degrees of freedom as an example, the dynamicmodel based on Lagrangian equation is established by using this method. According to the core idea of "forward analysis,reverse output", the recursive process of the model is analyzed emphatically. On the basis of verifying the correctness ofthe model, the indexes such as the dimensions and running time of the Stanford Arm model based on the PMM and the conventionalLagrange equation without the use of the PMM are compared. The results show that relative to the conventionalLagrange method, the complexity of the model established by PMM is reduced by 67.6%, and the computational efficiencyis increased by 66.3%. Stanford Arm is a complete constrained system. PMM is extended to underactuated nonholonomicconstrained systems, numerical simulation and physical prototype experiment analysis are carried out by using partial feedbacklinearization control algorithm which is closely related to the model, it’s reliability and effectiveness of the programmedmodeling method are verified, which provides a modeling method with higher efficiency and better versatility for differenttypes of robots.
高振宇、庄 未、黄用华、杨继伟、康文杰
机械学自动化技术、自动化技术设备计算技术、计算机技术
动力学建模程式化输出膨胀运算效率机器人
dynamicsmodelingprogrammedoutput expansioncomputation efficiencyRobot
高振宇,庄 未,黄用华,杨继伟,康文杰.一种面向机器人机械系统的程式化动力学建模方法[EB/OL].(2022-09-26)[2025-08-02].https://chinaxiv.org/abs/202210.00009.点此复制
评论