|国家预印本平台
首页|多目标优化的一种通用锥超体积进化算法

多目标优化的一种通用锥超体积进化算法

universal conical hypervolume evolutionary algorithm for multi-objective optimization

中文摘要英文摘要

实验已证实锥面积进化算法CAEA在求解二目标优化问题时具有比分解型多目标优化进化算法MOEA/D更高的运行效率。但CAEA不能处理多于两个目标的问题。为了将CAEA从二目标空间扩展到更高维度的目标空间,本文提出了一种锥超体积进化算法CHEA。CHEA引入一种通用的锥束划分策略,将高维目标空间划分为一系列锥形子区域。进而将多目标问题分解成为一系列标量子问题,分配给每个子问题一个锥形子区域,并且每个子问题采用局部超体积指标作为其标量目标。在三目标测试问题上实验结果表明CHEA可获得解集质量和求解效率两方面较好的整体性能。

It has been experimentally proven that the conical area evolutionary algorithm (CAEA) has a significantly higher run-time efficiency than the multi-objective evolutionary algorithm based on decomposition (MOEA/D) for bi-objective optimization. However, CAEA can not tackle problems with more than two objectives. In this paper, a conical hypervolume evolutionary algorithm (CHEA) is proposed to extend CAEA from bi-objective spaces to higher dimensional objective spaces. CHEA uses a universal conical partition strategy to partition high dimensional objective spaces into a series of conical subregions. Then a MOP is decomposed into a series of scalar subproblems, each of which is assigned a conical subregion and adopts a local hypervolumn indicator as its scalar objective. Experimental results on tri-objective test problems have revealed that CHEA can obtain the satisfactory overall performance on both run-time efficiency and solution quality.

谢悦鸿、刘子星、刘靖伟、吴昱、应伟勤

计算技术、计算机技术

进化算法多目标优化超体积锥形子区域帕累托占优

evolutionary algorithmmulti-objective optimizationhypervolumeconical subregionspareto dominance

谢悦鸿,刘子星,刘靖伟,吴昱,应伟勤.多目标优化的一种通用锥超体积进化算法[EB/OL].(2014-12-15)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201412-396.点此复制

评论