|国家预印本平台
首页|Balanced truncation and singular perturbation approximation model order reduction for stochastically controlled linear systems

Balanced truncation and singular perturbation approximation model order reduction for stochastically controlled linear systems

Balanced truncation and singular perturbation approximation model order reduction for stochastically controlled linear systems

来源:Arxiv_logoArxiv
英文摘要

When solving linear stochastic differential equations numerically, usually a high order spatial discretisation is used. Balanced truncation (BT) and singular perturbation approximation (SPA) are well-known projection techniques in the deterministic framework which reduce the order of a control system and hence reduce computational complexity. This work considers both methods when the control is replaced by a noise term. We provide theoretical tools such as stochastic concepts for reachability and observability, which are necessary for balancing related model order reduction of linear stochastic differential equations with additive L\'evy noise. Moreover, we derive error bounds for both BT and SPA and provide numerical results for a specific example which support the theory.

Martin Redmann、Melina A. Freitag

数学自动化基础理论计算技术、计算机技术

Martin Redmann,Melina A. Freitag.Balanced truncation and singular perturbation approximation model order reduction for stochastically controlled linear systems[EB/OL].(2016-11-16)[2025-08-07].https://arxiv.org/abs/1611.05494.点此复制

评论