|国家预印本平台
首页|基于模糊聚类的博物馆藏品推荐算法研究

基于模糊聚类的博物馆藏品推荐算法研究

Research on Museum Collection Recommendation Algorithm Based on Fuzzy Clustering

中文摘要英文摘要

由于目前博物馆藏品数量复杂多样,游客在其中游览需要花费大量的时间与精力,本文将推荐算法引入博物馆的智慧化建设中可以有效缓解这个问题。在推荐系统中使用模糊聚类算法对数据进行聚类分析,加快算法的收敛速度。模糊聚类算法的抗噪声性能良好,但是有容易陷入局部最优的缺点。本文针对Fuzzy C-Means算法,用优化初始聚类的方式改进模糊聚类算法。实验结果表明,改进的算法提高了推荐系统的效率和准确度。

ue to the complexity and variety of museum collections, it takes time and energy for visitors to visit. This paper will introduce the recommended algorithm into the intelligent construction of the museum to effectively alleviate this problem. In the recommendation system, the fuzzy clustering algorithm is used to cluster the data to accelerate the convergence speed of the algorithm. The fuzzy clustering algorithm has good anti-noise performance, but it has the disadvantage of being easily trapped in local optimum. the Fuzzy C-Means algorithm is used to improve the fuzzy clustering algorithm by optimizing the initial clustering in this paper. Experimental results show that the optimized algorithm improves the efficiency and accuracy of the recommendation system.

郑睿、卢海涛、韩雪莲、田爱奎

文化事业计算技术、计算机技术自动化基础理论

个性化模糊聚类推荐系统

personalizationfuzzy clusteringrecommendation system

郑睿,卢海涛,韩雪莲,田爱奎.基于模糊聚类的博物馆藏品推荐算法研究[EB/OL].(2019-03-05)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201903-36.点此复制

评论