Improvement of $A$-numerical radius inequalities of semi-Hilbertian space operators
Improvement of $A$-numerical radius inequalities of semi-Hilbertian space operators
Let $\mathcal{H}$ be a complex Hilbert space and let $A$ be a positive operator on $\mathcal{H}$. We obtain new bounds for the $A$-numerical radius of operators in semi-Hilbertian space $\mathcal{B}_A(\mathcal{H})$ that generalize and improve on the existing ones. Further, we estimate bounds for the $B$-operator seminorm and $B$-numerical radius of $2\times 2$ operator matrices, where $B=\mbox{diag}(A,A)$. The bounds obtained here improve on the existing ones.
Kallol Paul、Raj Kumar Nayak、Pintu Bhunia
数学
Kallol Paul,Raj Kumar Nayak,Pintu Bhunia.Improvement of $A$-numerical radius inequalities of semi-Hilbertian space operators[EB/OL].(2020-08-25)[2025-08-02].https://arxiv.org/abs/2008.10840.点此复制
评论