|国家预印本平台
首页|Infinite and finite dimensional Hilbert tensors

Infinite and finite dimensional Hilbert tensors

Infinite and finite dimensional Hilbert tensors

来源:Arxiv_logoArxiv
英文摘要

For an $m$-order $n-$dimensional Hilbert tensor (hypermatrix) $\mathcal{H}_n=(\mathcal{H}_{i_1i_2\cdots i_m})$, $$\mathcal{H}_{i_1i_2\cdots i_m}=\frac1{i_1+i_2+\cdots+i_m-m+1},\ i_1,\cdots, i_m=1,2,\cdots,n$$ its spectral radius is not larger than $n^{m-1}\sin\frac{\pi}{n}$, and an upper bound of its $E$-spectral radius is $n^{\frac{m}2}\sin\frac{\pi}{n}$. Moreover, its spectral radius is strictly increasing and its $E$-spectral radius is nondecreasing with respect to the dimension $n$. When the order is even, both infinite and finite dimensional Hilbert tensors are positive definite. We also show that the $m$-order infinite dimensional Hilbert tensor (hypermatrix) $\mathcal{H}_\infty=(\mathcal{H}_{i_1i_2\cdots i_m})$ defines a bounded and positively $(m-1)$-homogeneous operator from $l^1$ into $l^p$ ($1<p<\infty$), and the norm of corresponding positively homogeneous operator is smaller than or equal to $\frac{\pi}{\sqrt6}$.

Yisheng Song、Liqun Qi

数学

Yisheng Song,Liqun Qi.Infinite and finite dimensional Hilbert tensors[EB/OL].(2014-01-20)[2025-05-05].https://arxiv.org/abs/1401.4966.点此复制

评论