|国家预印本平台
首页|Proofs of Mizuno's Conjectures on Rank Three Nahm Sums of Index $(1,2,2)$

Proofs of Mizuno's Conjectures on Rank Three Nahm Sums of Index $(1,2,2)$

Proofs of Mizuno's Conjectures on Rank Three Nahm Sums of Index $(1,2,2)$

来源:Arxiv_logoArxiv
英文摘要

Mizuno provided 15 examples of generalized rank three Nahm sums with symmetrizer $\mathrm{diag}(1,2,2)$ which are conjecturally modular. Using the theory of Bailey pairs and some $q$-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except that two Nahm sums are sums of modular forms of weights $0$ and $1$. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers $\mathrm{diag}(1,1,2)$ and $\mathrm{diag}(1,2,2)$.

Boxue Wang、Liuquan Wang

数学

Boxue Wang,Liuquan Wang.Proofs of Mizuno's Conjectures on Rank Three Nahm Sums of Index $(1,2,2)$[EB/OL].(2024-07-31)[2025-07-25].https://arxiv.org/abs/2407.21725.点此复制

评论