基于模糊聚类和改进GRNN的云服务器聚类算法的研究与实现
Research and Implementation of Cloud Server Clustering Algorithm Based on Fuzzy Clustering and Improved GRNN
IVCE云平台拥有几千台云服务器和多种任务,每隔半小时平台就会下大量的任务给云服务器执行,在此情况下,将云服务器聚类等级化是合理任务调度、最大化云平台效率的基础。由于GRNN算法具有很强的非线性映射能力和柔性网络结构,适合解决服务器聚类中出现的非线性问题,但是GRNN网络属于预测算法,本文提出结合模糊C均值算法形成服务器聚类算法,并加入改进果蝇优化算法克服GRNN收敛速度慢和易陷入极小值问题,而且IVCE平台收集23项性能指标,本文将FCM算法输出结果经过邻域粗糙集算法分析挑选特征,避免维数灾难问题。本文提出的算法相比于已有的研究成果,速度上分别加快了1.43、3.22和3.72倍;收敛步数方面,也分别缩减了1.61、5和6倍,并且在运行算法时,机器的内存和cpu占用率都控制在50%左右,不影响正常功能。而且,经过本文算法聚类后,平台的任务调度更加均衡,侧面证明算法聚类效果的准确性。
IVCE cloud platform has thousands of cloud servers and a variety of tasks, a task every half an hour to the cloud server platform will perform, in this case, the cloud server cluster hierarchy is the basis of reasonable task scheduling, the maximum efficiency of the cloud platform. Because of its strong nonlinear mapping ability and flexible network structure GRNN algorithm suitable for solving nonlinear problems in cluster server, but belongs to the GRNN network prediction algorithm, is proposed in this paper based on the fuzzy C means algorithm Research and Implementation of Cloud Server Clustering Algorithm Based on Fuzzy Clustering and Improved GRNN form the server clustering algorithm, and add improved fruit fly optimization algorithm can overcome GRNN slow convergence and local minimum problem, and IVCE platform to collect 23 performance indexes, this paper will FCM the output of the algorithm through the neighborhood rough set analysis algorithm for feature selection, avoid the dimension disaster. The research results of this paper compared to the existing algorithm, the speed is accelerated by 1.43 and 3.22 respectively and 3.72 times; the step number, were also reduced by 1.61, 5 and 6 times, and in the operation of the algorithm, the machine\'s memory and CPU usage control in about 50%, does not affect the normal function. Moreover, after the algorithm clustering in this paper, the task scheduling of the platform is more balanced.
马晨、谷利泽
计算技术、计算机技术
云服务器聚类算法邻域粗糙集理论模糊C-均值果蝇优化算法广义回归神经网络
loud server clustering algorithmNeighborhood rough set theoryFuzzy c-means clustering algorithmDrosophila optimization algorithmGeneralized regression neural network
马晨,谷利泽.基于模糊聚类和改进GRNN的云服务器聚类算法的研究与实现[EB/OL].(2017-11-27)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201711-195.点此复制
评论