基于深度时空卷积神经网络的人群异常行为检测和定位
针对公共场合人群异常行为检测准确率不高和训练样本缺乏的问题,提出一种基于深度时空卷积神经网络的人群异常行为检测和定位的方法。首先针对监控视频中人群行为的特点,综合利用静态图像的空间特征和前后帧的时间特征,将二维卷积扩展到三维空间,设计面向人群异常行为检测和定位的深度时空卷积神经网络;为了定位人群异常行为,将视频分成若干子区域,获取视频的子区域时空数据样本,然后将数据样本输入设计的深度时空卷积神经网络进行训练和分类,实现人群异常行为的检测与定位。同时,为了解决深度时空卷积神经网络训练时样本数量不足的问题,设计一种迁移学习的方法,利用样本数量多的数据集预训练网络,然后在待测试的数据集中进行微调和优化网络模型。实验结果表明,该方法在UCSD和Subway公开数据集上的检测准确率分别达到了99%和93%以上。
o handle the issues of low accuracy and lacking training samples in abnormal crowd behavior detection in public places, this paper proposes a method based on deep spatial-temporal convolutional neural networks in this paper. In view of the characteristics of crowd behavior in monitoring videos, a deep spatial-temporal convolution neural network for detecting abnormal crowd behavior is first designed by extending 2D convolution to the 3D space according to spatial features of static images and temporal features between the frames before and after the current frame. To locating abnormal crowd, this paper divides video frames into a number of subregions that obtain spatial-temporal samples. Then, the samples are input into the designed deep spatial-temporal convolutional neural network for training and classification, whose results are used to detect and locate abnormal crowd. In the meanwhile, this paper utilizes a transfer learning method to deal with the issue of lacking training samples when training the deep spatial-temporal convolutional neural network, where datasets with more training samples are used to pre-train the network which is fine-tuned and optimized on testing datasets with fewer samples. Experimental results show that the detection accuracies on UCSD and Subway open datasets are greater than 99% and 93%, respectively.
余进、陈钦、杨丽、胡学敏、童秀迟
计算技术、计算机技术自动化技术、自动化技术设备
人群异常行为检测深度时空卷积神经网络迁移学习数据扩充
余进,陈钦,杨丽,胡学敏,童秀迟.基于深度时空卷积神经网络的人群异常行为检测和定位[EB/OL].(2019-01-03)[2025-08-18].https://chinaxiv.org/abs/201901.00005.点此复制
评论