直觉模糊微积分中的中值不等式
Mean Value Inequalities with respect to Intuitionistic Fuzzy Calculus
Atanassov 提出直觉模糊集,它的基本要素是直觉模糊数, 直觉模糊数是一个序对. 基于此,近来直觉模糊微积分被提出,为了深化此理论, 本文先回顾一些基本的概念和性质,随后提出并详细证明直觉模糊微积分中的中值不等式定理,这些结论非常类似经典微积分中的理论,文中最后简化了直觉模糊微积分中的积分函数。。
tanassov introduced intuitionistic fuzzy set (A-IFS), whose basic elements are intuitionistic fuzzy numbers (IFNs). The IFN is an ordered pair, which is described by a membership degree, a non-membership degree, based on which the intuitionistic fuzzy calculus (IFC) has been put forward recently. To further develop the theory of IFCs, in this paper, we first review the basic concepts and properties, then we present the mean value inequalities which are similar to the ones in the classical calculus and offer the proofs in detail, finally, we simplify integrand function under intuitionistic fuzzy environment.
艾正海
数学
直觉模糊数直觉模糊微积分中值定理中值不等式.
Intuitionistic fuzzy numbersintuitionistic fuzzy calculusmean value theoremmean value inequalities.
艾正海.直觉模糊微积分中的中值不等式[EB/OL].(2015-09-01)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201509-11.点此复制
评论