|国家预印本平台
首页|网络攻击检测的门控记忆网络方法

网络攻击检测的门控记忆网络方法

中文摘要英文摘要

针对互联网大规模网络攻击检测难题,结合词向量特征表示与循环神经网络,提出了一种门控记忆网络检测方法。该方法首先将网络请求数据转换为低维实值向量序列表示,然后利用门控循环神经网络的长时记忆能力提取请求数据的特征,最后采用逻辑斯特回归分类器实现了对网络攻击的自动检测。在CSIC2010公开数据集上,达到了98.5%的10折交叉验证F1分数。与传统方法相比,较大幅度地提高了网络攻击检测的准确率和召回率。所提方法可自动检测网络攻击,具有良好的检测效果。

o solve the problem of large-scale network attack detection, this paper proposed a gated memory network method, based on word vector feature representation and recurrent neural network. Firstly, the proposed method transformed the network request data into low-dimension real-value vector sequence representation. And then, it extracted the features of request data by using the memory ability of gated recurrent neural network. Finally, it adopted the logistic regression classifier to achieve automatic detection of network attack. On the CSIC2010 public data set, this method achieves 98.5% 10-fold cross-validation F1-score. Comparing with traditional methods, it can effectively improve the precision and recall rates for detecting network attack. The proposed method can detect network attacks automatically and has good detection results.

王家宝、李阳、周振吉、苗壮、徐伟光

10.12074/201805.00455V1

计算技术、计算机技术

网络攻击检测低维实值向量表示门控循环神经网络

王家宝,李阳,周振吉,苗壮,徐伟光.网络攻击检测的门控记忆网络方法[EB/OL].(2018-05-24)[2025-08-24].https://chinaxiv.org/abs/201805.00455.点此复制

评论