|国家预印本平台
首页|基于形变异常度的函数型数据异常值检测算法改进

基于形变异常度的函数型数据异常值检测算法改进

he improvement of functional data outlier detection algorithm based on shape-outlyingness

中文摘要英文摘要

针对基于改进波段深度和改进上境图深度的函数型数据异常值检测算法不能有效识别小范围异常曲线的问题,本文提出了形变异常度并对异常值检测算法进行了改进。先对函数型数据导数曲线计算统计深度,剔除深度值较小的外围曲线后求取平均曲线,再计算导数曲线偏离平均曲线的程度,即形变异常度,最后,结合形变异常度对异常值检测算法进行修改,补充函数型数据的形变异常信息。模拟结果表明,本文改进的异常值检测算法可以有效识别出仅在小范围异常的曲线,同时提高了对形状异常值的识别准确率。

Since the functional data outlier detection algorithm based on modified band depth and modified epigraph index is fail to detect the curves which is just abnormal in a small range, we propose a new shape-outlyingness and improve the outlier detection algorithm in order to solve this problem. First, we calculate the data depth of the functional data’s derivative, eliminate the abnormal curve whose depth value is small, then compute the trimming mean curve, and calculate the shape-outlyingness which is the degree of deviation between the derivative curve and the average curve, Finally, we modify the outlier detection algorithm based on shape-outlyingness, which supply the functional data’s shape information. The simulation results show that the improved outlier detection algorithm can effectively identify the curves whose anomaly rage is small, and it also improves the shape outliers’ detection rates.

罗汉、杨冰倩

计算技术、计算机技术

异常值检测多元分析统计深度函数型数据分析形变异常度

Outlier detectionMultivariate analysisData depthFunctional data analysisShape-outlyingness

罗汉,杨冰倩.基于形变异常度的函数型数据异常值检测算法改进[EB/OL].(2020-03-31)[2025-06-15].http://www.paper.edu.cn/releasepaper/content/202003-342.点此复制

评论