数学物理方程中的分离变量法
Method of Separation of Variables in Mathematical Equations of Physics
分离变量法是求解各种类型的线性偏微分方程初边值问题的普遍方法之一.本文主要研究了在一般边界条件下,利用分离变量法解有界弦振动方程和一维热传导方程的一般方法,得到了特征值参数 满足的一般方程.对于非齐次方程和非齐次边界条件的情形,我们利用叠加原理,同样给出了其具有级数形式的解. 同时,本文还就施图姆-刘维尔特征值问题进行了简要阐述,说明了施图姆-刘维尔特征值问题是分离变量法的理论基础.最后,我们验证了已知函数满足一定条件的情况下古典解的存在性.
Method of separation of variables is a general way to solve initial-boundary value problems of various types of linear partial differential equations. This paper studies the general approach to solve the initial-boundary value problem of bounded string vibration equation and one dimensional heat equation and the equation that the eigenvalue parameter satisfy is given. In the case of non-homogeneous equation with non-homogeneous boundary conditions, the series solution is also given by using the principle of superposition. Meanwhile, this paper also discuss the Sturm-Liouville eigenvalue problem which is the theoretical basis of method of separation of variables,and finally,the existence of classical solutions is verified by giving the functions which have been known certain conditions.
张善武、黄文贤、李根
数学物理学
图像压缩分离变量法施图姆-刘维尔问题特征值特征函数
Method of Separation of VariablesSturm-Liouville ProblemEigenvalueEigenfunction
张善武,黄文贤,李根.数学物理方程中的分离变量法[EB/OL].(2009-09-10)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200909-290.点此复制
评论