|国家预印本平台
首页|The multistochastic Monge-Kantorovich problem

The multistochastic Monge-Kantorovich problem

The multistochastic Monge-Kantorovich problem

来源:Arxiv_logoArxiv
英文摘要

The multistsochastic Monge--Kantorovich problem on the product $X = \prod_{i=1}^n X_i$ of $n$ spaces is a generalization of the multimarginal Monge--Kantorovich problem. For a given integer number $1 \le k<n$ we consider the minimization problem $\int c d \pi \to \inf$ of the space of measures with fixed projections onto every $X_{i_1} \times \dots \times X_{i_k}$ for arbitrary set of $k$ indices $\{i_1, \dots, i_k\} \subset \{1, \dots, n\}$. In this paper we study basic properties of the multistochastic problem, including well-posedness, existence of a dual solution, boundedness and continuity of a dual solution.

Nikita A. Gladkov、Alexander P. Zimin、Alexander V. Kolesnikov

数学

Nikita A. Gladkov,Alexander P. Zimin,Alexander V. Kolesnikov.The multistochastic Monge-Kantorovich problem[EB/OL].(2020-08-18)[2025-08-04].https://arxiv.org/abs/2008.07926.点此复制

评论