向量KdV方程及其仿Kahler结构
Vector KdV Equations and Their Para-Kahler Structure
在本文中,我们主要证明n-向量KdV方程是从R1到仿射影空间PPn 的几何KdV流的一种约化,从而可以几何实现为对称李代数gl(n + 1;R)中在初始曲线适当约束之下的Sym-Pohlmeyer运动曲线,给出了n-向量KdV方程的一个仿Kahler几何的刻画。
We show that the n-vector KdV equation is exactly a reduction of the geometric KdV ows from R1 to the para-projection space PPn = GL(n+1;R)=GL(1;R)GL(n;R) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the (para) symmetric Lie algebra gl(n + 1;R) with initial data being suitably restricted. This gives a para-geometric characterization of vector KdV equations.
刘浩然、丁青
数学物理学
仿Kahler结构向量KdV几何实现
Para-Kahlervector KdVgeometric realization
刘浩然,丁青.向量KdV方程及其仿Kahler结构[EB/OL].(2014-09-26)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201409-343.点此复制
评论