|国家预印本平台
首页|基于深度学习的视频行为识别研究

基于深度学习的视频行为识别研究

Research on Video Action Recognition Based on Deep Learning

中文摘要英文摘要

本文从视频行为识别模型实用性和识别性能综合考虑,研究设计了一种端到端的深度行为识别模型,能够实现在原始视频上进行为识别,不需要预先对视频进行手工特征的提取。本文利用预先训练好的二维卷积核延拓生成三维卷积核并在此基础上设计了基于三维卷积的提取网络实现局部时空特征提取。在此基础上,本文创新性的将自注意力机制与时空特征提取网络相结合,使得仅具有局部感知能力的特征序列在进行自注意力机制处理后能够自动将相关特征关联起来,从而获得更好的视频全局表征来进行后续的行为识别。同时,本文使用的模型不依赖任何循环神经网络,通过在公开数据集上的实验验证,本文所提出的深度视频行为识别模型具有很好的识别性能和处理速度。?????

his paper considers both the practicality and performance of the video action recognition model, and designs an end-to-end deep action recognition model, which can be identified on the original video without prior manual extraction of the video. In this paper, a 3D convolution kernel is generated by using pre-trained 2D convolution kernel extension. Based on this, a 3DCNN-based extraction network is designed to realize local spatio-temporal feature extraction. On this basis, this paper innovatively combines the self-attention mechanism with the spatiotemporal feature extraction network, so that only the feature sequences with local perceptual ability can automatically correlate related features after the self-attention mechanism. This combination achieves better global representation of the video for subsequent action recognition. At the same time, the model used in this paper does not depend on any recurrent neural network, which effectively improves the training and prediction speed of the model. Through the experimental verification on the public dataset, the model proposed in this paper has a high performance and processing speed.?????

谢东亮、林闯

计算技术、计算机技术

深度学习视频行为识别3DCNN自注意力机制

eepLearningVideo Action Recognition3DCNNSelf-Attention

谢东亮,林闯.基于深度学习的视频行为识别研究[EB/OL].(2018-12-26)[2025-04-26].http://www.paper.edu.cn/releasepaper/content/201812-121.点此复制

评论