|国家预印本平台
首页|自监督图像增强网络:仅需低照度图像进行训练

自监督图像增强网络:仅需低照度图像进行训练

Self-supervised Image Enhancement Network Training With Low Light Images Only

中文摘要英文摘要

本文提出了一种基于深度学习的自监督低照度图像增强方法。受信息熵理论和Retinex模型的启发,我们提出了一种基于信息熵最大的Retinex模型。利用该模型,一个非常简单的网络可以将照度图和反射图分离开来,且仅用低照度图像就可以进行训练。为了实现自监督学习,我们在模型中引入了一个约束条件:反射图的最大值通道与低照度图像的最大值通道一致,且其熵最大。我们的模型非常简单,不依赖任何精心设计的数据集(即使是一张低照度图像也能完成网络的训练),网络仅需进行分钟级的训练即可实现图像增强。实验证明,该方法在处理速度和效果上均达到了当前最新水平。

his paper proposes a self-supervised low light image enhancement method based on deep learning. Inspired by information entropy theory and Retinex model, we proposed a maximum entropy based Retinex model. With this model, a very simple network can separate the illumination and reflectance, and the network can be trained with low light images only. We introduce a constraint that the maximum channel of the reflectance conforms to the maximum channel of the low light image and its entropy should be largest in our model to achieve self-supervised learning. Our model is very simple and does not rely on any well-designed data set (even one low light image can complete the training). The network only needs minute-level training to achieve image enhancement. It can be proved through experiments that the proposed method has reached the state-of-the-art in terms of processing speed and effect. "

10.12074/202003.00048V1

电子技术应用

低照度图像增强自监督学习最大信息熵Retinex理论

Low Light Image EnhancementSelf-supervised LearningMax EntropyRetinex

.自监督图像增强网络:仅需低照度图像进行训练[EB/OL].(2020-03-06)[2025-08-16].https://chinaxiv.org/abs/202003.00048.点此复制

评论