基于动态因果模型(DCM)功能连接参数的抑郁症识别
epression recognition via dynamic causal modeling (DCM) on fMRI
利用功能核磁共振数据对抑郁症进行识别,使得疾病的客观诊断成为可能。动态因果模型通过神经元建模的方式探讨脑区之间的效能连接,连接参数的异常很有可能和疾病相关。本文利用动态因果模型分析识别悲伤面部表情过程中额叶、扣带回和海马的效能连接,并利用脑区之间的连接参数建立抑郁症识别模型。结果表明动态因果模型的连接参数对抑郁症的识别有积极作用。
epression recognition based on fMRI provide the possibility for objective diagnosis of disease. Dynamic causal modeling (DCM) can explore the effective connectivity between brain regions via modeling on neural activity. The abnormal of connectivity parameters may relate to depression status. This paper studies the effective connectivity between anterior cingulate cortex, right inferior frontal gyrus and hippocampus, and then utilized such connectivity parameteres under sad stimuli for depression recognition model. The rsults demonstrated the their ability for depression recognition.
卢青
神经病学、精神病学医学研究方法基础医学
生物医学工程抑郁症动态因果模型(DCM)
Biomedical EngineeringDepressionDCM
卢青.基于动态因果模型(DCM)功能连接参数的抑郁症识别[EB/OL].(2012-01-04)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201201-38.点此复制
评论