|国家预印本平台
首页|基于随机子空间的线性嵌入推斥图及其在半监督学习中的应用

基于随机子空间的线性嵌入推斥图及其在半监督学习中的应用

Random subspace based linear embedding repulsion graph and its application to semi-supervised learning

中文摘要英文摘要

数据图的构建是图半监督学习中的关键步骤之一。在线性局域嵌入图构建方法的基础上,提出了基于随机子空间的线性嵌入推斥图构建方法。该方法使用测地距离确定近邻关系,并仅使用同类别的近邻数据进行数据重构,以获取能够更加充分反映数据拓扑信息的数据图;同时,引入随机子空间的思想,通过对原始特征空间的数据进行重采样,降低数据噪声和冗余的影响。在人工数据集、字符数据集、文本数据集和UCI数据集上的实验结果表明了本文算法的可行性和有效性。

Graph construction is a key step for graph based semi-supervised classification. Inspiring the success of the Local Linear Embedding method, this paper present a novel method called Random Subspace Method based Linear Neighborhoods Embedding Repulsion graph (RSMLNER). In the proposed framework, the geodesic distance is first used to define neighborhood system, and only the neighbors with same class label are then used for data reconstruction in the neighborhood system, resulting that one can construct a good graph which can describe the data manifold more effectively. Moreover, the random sub-space method is used for noise suppression. Experiments on the artificial dataset, Binary Alphadigits dataset, Newsgroups dataset and UCI dataset show the feasibility and effectiveness of the proposed method.

杨欣、张长帅、周大可

计算技术、计算机技术

半监督学习图的构建随机子空间

Semi-supervised learningGraph constructionRandom Subspace

杨欣,张长帅,周大可.基于随机子空间的线性嵌入推斥图及其在半监督学习中的应用[EB/OL].(2011-11-08)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201111-132.点此复制

评论