|国家预印本平台
首页|Stacking学习与一般集成方法的比较研究

Stacking学习与一般集成方法的比较研究

Comparative Study of Stacking Learning and General Ensemble Methods

中文摘要英文摘要

集成学习(ensemble learning)因通过组合多个学习器实现更强的泛化能力而被广泛使用。目前一般的集成方法如AdaBoost、Bagging等均是基于一种算法,而Stacking集成是基于多种算法。本文对分类集成问题,基于朴素贝叶斯、logistic回归、最近邻、决策树和规则学习5种基分类器,构建Stacking的学习框架,并与AdaBoost、Bagging、随机森林(RF)以及投票表决和交叉验证下选择最佳分类器五种方法进行比较。通过2组模拟数据和36组真实数据的实证分析表明,Stacking在所有方法中表现最好,具有最强的泛化能力且更适合大样本的情况。

Ensemble learning has been widely used because of the great generalization ability by combining multiple learners. The general methods such as AdaBoost, Bagging are usually based on the same algorithm, but Stacking is based on different algorithms. Aiming at classification problems, this paper constructed a framework for Stacking consist of 5 types of base classifiers which are naive bayes, logistic regression, k nearest neighbor, decision tree and rule learning. And it made a comparasion with 5 other methods that are AdaBoost, Bagging, random forests (RF), voting plan and selecting the best using cross validation. The experiments of 2 simulated and 36 real datasets were conducted and the results showed that Stacking is the best among all others according to the claasification presion and is more suitable for large sample cases.

郑少智、鲁莹

计算技术、计算机技术

集成学习组合Stacking分类器泛化能力

ensemblelearningcombinationStackingclassifiergeneralization ability

郑少智,鲁莹.Stacking学习与一般集成方法的比较研究[EB/OL].(2017-02-09)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201702-43.点此复制

评论