基于网络流量领域知识在深度学习中的模型构建方案
Model construction method based on network traffic domain Feature in deep learning
为了提高网络流量模型的分类效果,本文提出将网络流量的领域知识与深度学习结合的方法。该模型会使用网络流量的领域特征,同时也构造出了自动学习交叉特征的网络层auto-cross,并使用注意力机制选取重要特征,以此来丰富低阶特征,增强模型的表达效果,线性层与auto-cross层是用来处理领域特征。最后使用卷积神经网络学习高阶特征,提高模型的泛化能力,两者进行融合,以此来提高模型对网络流量的分类能力。最后在两个数据集上进行实验,多分类AUC作为评测指标,通过实验对比验证了新模型的有效性。
In order to improve the classification effect of network traffic model, this paper proposes a method that combines the domain feature of network traffic with deep learning. This model uses the domain features of network traffic, and also constructs a network layer auto-cross that automatically learns the cross features, and uses the attention mechanism to select important features to enrich low-order features and enhance the model\'s expression effect. Layers and auto-cross layers are used to handle domain features. Finally, convolutional neural networks are used to learn higher-order features to improve the generalization ability of the model. The two are fused to improve the model\'s ability to classify network traffic. Finally, experiments are performed on two data sets, and multi-class AUC is used as an evaluation index. The validity of the new model is verified through experimental comparison.
秦素娟、王儒
通信
网络流量分类深度学习注意力机制卷积神经网络
Network traffic classificationDeep learningttention mechanismConvolutional neural network
秦素娟,王儒.基于网络流量领域知识在深度学习中的模型构建方案[EB/OL].(2020-02-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202002-153.点此复制
评论