基于人体红外数据的小样本蒸馏网络分类算法
Few-Shot Distillation Network Classification Algorithm Based on Human Infrared Data
为了解决代谢综合征红外热成像数据样本过少的问题,结合知识蒸馏和小样本学习的相关方法,提出一种基于小样本蒸馏网络的代谢综合征辅助诊断模型。相比于传统诊断方法,该模型可在提高诊断结果的同时避免因样本量少而造成的过拟合,同时通过学生网络继承教师网络的部分参数来压缩模型,减小因每个样本的数据过大引起的计算过大。
In order to solve the problem of having too few samples in infrared thermal imaging data of metabolic syndrome, a distillation network based auxiliary diagnosis model for metabolic syndrome is proposed by combining knowledge distillation and few-shot learning methods. Compared with traditional diagnosis methods, the model can improve the diagnosis results while avoiding overfitting caused by small sample size. At the same time, the model is compressed by inheriting some parameters of the teacher network through the student network to reduce the calculation caused by the excessive data of each sample.
许昌
医药卫生理论医学研究方法计算技术、计算机技术
代谢综合征红外热成像知识蒸馏小样本学习
Metabolic syndromeInfrared thermal imagingKnowledge distillationFew-shot learning
许昌.基于人体红外数据的小样本蒸馏网络分类算法[EB/OL].(2023-04-13)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202304-229.点此复制
评论