基于聚类的空间匿名化位置隐私保护研究
Research of Spatial Anonymization Location Privacy Preserving Based on Clustering
时空众包任务需要任务地点附近的工人完成,为实现高效的任务分配,通常需要工人将自己的位置信息上传给众包服务器,只有工人位置隐私得到保护,方可吸引更多工人参与任务分配。本文提出在任务分配阶段保护工人和任务位置信息的隐私保护框架,该框架在不影响距离计算的情况下对工人和任务位置进行转化,同时基于空间匿名技术对工人位置进行匿名化,在匿名化的过程中根据工人分布情况添加一定量的噪声数据以进一步保护工人位置隐私。在真实数据集上的实验验证了该框架的有效性。
In spatial crowdsourcing, tasks need to be completed by workers near the task location. In order to achieve efficient task allocation, workers usually need to upload their location information to crowdsourcing server. Only when workers\' location privacy is protected, can more workers be attracted to participate in task allocation. In this paper, we propose a privacy preserving framework to protect workers and the task location information in the task allocation stage. The framework transforms the workers and task location without affecting the distance calculation. At the same time, it anonymizes the workers\' location based on spatial anonymity technology. In the process of anonymization, we generate a certain amount of noise data according to the distribution of workers to further protect workers location privacy. Experiments on real-word datasets verify the effectiveness of the framework.
王宁、杨文扬
计算技术、计算机技术
时空众包位置隐私保护匿名
spatial crowdsourcinglocation privacy-preservinganonymity
王宁,杨文扬.基于聚类的空间匿名化位置隐私保护研究[EB/OL].(2021-05-14)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202105-83.点此复制
评论