|国家预印本平台
首页|基于高效胶囊网络和LSTM的流量分类研究

基于高效胶囊网络和LSTM的流量分类研究

Research on Traffic Classification Based on Efficient Capsule Network and LSTM

中文摘要英文摘要

随着通信技术与互联网的高速发展,流量的种类和总量呈显著上升趋势。在这样的环境下,网络流量进行合理的分类,对于保证网络管理者有效地监督和分配网络资源,维护网络安全尤为重要。本文提出了一种基于高效胶囊神经网络和长短期记忆(Long Short-Term Memory,LSTM)的流量分类方法。首先基于高效胶囊神经网络胶囊实现流量空间特征的提取,提升了模型整体的效率,其次利用LSTM提取流量的时序特征进一步提升分类模型的性能。最后通过仿真实验,与其他深度学习方法比较,验证了本文提出的模型具有更好的网络流量分类效果。

With the rapid development of communication technology and the Internet, new appearing network applications are emerging, and the demand for traffic is increasingly strong. In such an environment, a reasonable classification of network traffic is especially important to ensure that network managers can effectively monitor and allocate network resources.In this paper, we propose a traffic classification model based on efficient capsule neural network and long short-term memory. Based on the efficient capsule neural network capsule, the traffic flow spatial characteristics are extracted, which improves the overall efficiency of the model, and the performance of the classification model is further improved by using the time series characteristics extracted by the long-term short-term memory modules. Finally, compared with other deep learning methods, the experimental results show that the proposed model has better network traffic classification effect.

廖青、刘文新

通信

深度学习流量分类高效胶囊神经网络长短期记忆

deep learningtraffic classificationEfficient-CapsNetLSTM

廖青,刘文新.基于高效胶囊网络和LSTM的流量分类研究[EB/OL].(2023-04-25)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/202304-334.点此复制

评论