SVD曲率谱降噪和快速谱峭度的滚动轴承微弱故障特征提取
SVD curvature spectra denoise before fast spectral kurtosis in Rolling bearing fault feature extraction
针对轴承振动信号信噪比低,故障信号微弱,快速谱峭度分析选取共振中心频率和带宽不准确等问题,提出基于奇异值分解(Singular value decomposition, SVD)曲率谱降噪和快速谱峭度分析相结合的微弱故障提取方法。快速谱峭度利用最大谱峭度值自动确定带通滤波器的共振中心频率和带宽,从而求出轴承的希尔伯特包络。将SVD曲率谱降噪与之结合,先对振动信号进行SVD分解,通过奇异值曲率谱对原始信号进行自适应降噪,提高信噪比,再进行快速谱峭度分析,使得共振中心频率和带宽更加准确,包络结果更加清晰。试验表明该方法具有良好的效果。
iming at the low signal to noise ratio, weak fault information in bearing vibration, and fast kurtogram failed to select resonance center frequency and filter bandwidth accurately, an adaptive envelope method based on SVD curvature spectrum noise reduction and fast kurtogram is proposed. Fast kurtogram is able to automatically determine the band-pass filter's center frequency and bandwidth by the maximum kurtosis and thus calculate the Hilbert envelope. Associated with the SVD curvature spectrum noise reduction, the vibration signal is firstly decomposed by SVD, through singular values's curvature spectrum to reduce noise. Then use fast kurtogram to calculate kurtosis, and Hilbert envelope determined by the maximum kurtosis. Through the actual signal in rolling bearing shows that the method has a good effect.
刘鹏、汤宝平
机械运行、机械维修自动化技术、自动化技术设备声学工程
SVD曲率谱降噪快速谱峭度微弱故障提取包络分析
SVD curvature spectrum denoisedfast kurtogramweak fault feature extractionenvelope analysis
刘鹏,汤宝平.SVD曲率谱降噪和快速谱峭度的滚动轴承微弱故障特征提取[EB/OL].(2014-06-12)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/201406-197.点此复制
评论