PS-LSTM:中文隐私敏感实体自适应识别模型
PS-LSTM: Chinese Privacy Sensitive Entity Adaptive Recognition Model
针对无法采用通用字符规则识别特异性隐私命名实体的问题,本文提出一种基于融合词向量的字符表证构建方法的词汇增强中文隐私敏感自适应识别模型CPS-LSTM。该模型具有更精简的网络结构,在语句处理性能上具有极大优势,并且能够支持多语句的并行处理。实验表明,与目前已有的命名实体识别模型相比,本文提出的模型在相同的数据集与超参数组合下具有更快的收敛速度,并且能够从目标文本中挖掘出更多的潜在隐私数据实体,具有更优的实体识别精度。
his paper proposes a Chinese privacy sensitive adaptive recognition model CPS-LSTM, which is based on the character representationconstruction method of fused word vector. The model has a more streamlined network structure, has great advantages in statement processing performance, and can support parallel processing of multiple statements. The experiment shows that compared with the existing NER models, this model has faster convergence speed under the same data set and super-parameter combination, and can mine more potential private data entities from the target text, with better entity recognition accuracy.
关振智、蔡正华、张华
计算技术、计算机技术
计算机应用技术命名实体识别隐私数据词汇增强
omputer Application TechnologyName Entity RecognitionPrivacy DataVocabulary enhancement
关振智,蔡正华,张华.PS-LSTM:中文隐私敏感实体自适应识别模型[EB/OL].(2023-03-08)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/202303-83.点此复制
评论