|国家预印本平台
首页|Dirichlet Scalar Determinants On Two-Dimensional Constant Curvature Disks

Dirichlet Scalar Determinants On Two-Dimensional Constant Curvature Disks

Dirichlet Scalar Determinants On Two-Dimensional Constant Curvature Disks

来源:Arxiv_logoArxiv
英文摘要

We compute the scalar determinants $\det(\Delta+M^{2})$ on the two-dimensional round disks of constant curvature $R=0$, $\mp 2$, for any finite boundary length $\ell$ and mass $M$, with Dirichlet boundary conditions, using the $\zeta$-function prescription. When $M^{2}=\pm q(q+1)$, $q\in\mathbb N$, a simple expression involving only elementary functions and the Euler $\Gamma$ function is found. Applications to two-dimensional Liouville and Jackiw-Teitelboim quantum gravity are presented in a separate paper.

Soumyadeep Chaudhuri、Frank Ferrari

10.1007/s00023-025-01576-w

物理学

Soumyadeep Chaudhuri,Frank Ferrari.Dirichlet Scalar Determinants On Two-Dimensional Constant Curvature Disks[EB/OL].(2024-05-23)[2025-08-02].https://arxiv.org/abs/2405.14958.点此复制

评论