An exponential improvement for diagonal Ramsey
An exponential improvement for diagonal Ramsey
The Ramsey number $R(k)$ is the minimum $n \in \mathbb{N}$ such that every red-blue colouring of the edges of the complete graph $K_n$ on $n$ vertices contains a monochromatic copy of $K_k$. We prove that \[ R(k) \leqslant (4 - \varepsilon)^k \] for some constant $\varepsilon > 0$. This is the first exponential improvement over the upper bound of ErdÅs and Szekeres, proved in 1935.
Marcelo Campos、Simon Griffiths、Robert Morris、Julian Sahasrabudhe
数学
Marcelo Campos,Simon Griffiths,Robert Morris,Julian Sahasrabudhe.An exponential improvement for diagonal Ramsey[EB/OL].(2025-08-04)[2025-08-16].https://arxiv.org/abs/2303.09521.点此复制
评论