|国家预印本平台
首页|An exponential improvement for diagonal Ramsey

An exponential improvement for diagonal Ramsey

An exponential improvement for diagonal Ramsey

来源:Arxiv_logoArxiv
英文摘要

The Ramsey number $R(k)$ is the minimum $n \in \mathbb{N}$ such that every red-blue colouring of the edges of the complete graph $K_n$ on $n$ vertices contains a monochromatic copy of $K_k$. We prove that \[ R(k) \leqslant (4 - \varepsilon)^k \] for some constant $\varepsilon > 0$. This is the first exponential improvement over the upper bound of Erdős and Szekeres, proved in 1935.

Marcelo Campos、Simon Griffiths、Robert Morris、Julian Sahasrabudhe

数学

Marcelo Campos,Simon Griffiths,Robert Morris,Julian Sahasrabudhe.An exponential improvement for diagonal Ramsey[EB/OL].(2025-08-04)[2025-08-16].https://arxiv.org/abs/2303.09521.点此复制

评论