基于特征注意力机制的图像超分辨率重建
Image Super-resolution Reconstruction based on Feature Attention Mechanism
图像的超分辨率重建是基于已有的低分辨率图片通过软件或硬件的方法获得对应的高分辨率图像的技术。本文立足于生成对抗网络,在现有研究的基础上,针对现有方法不能较好地恢复具有未知复杂退化因素的低分辨率图像和突出前景的问题,将金字塔特征注意机制引入到用纯合成数据训练的图像盲超分辨率领域中,使用二阶退化过程来模拟实际退化。具体来说,本文采用金字塔特征注意机制,以增强高级上下文特征和低级空间结构特征。其中上下文感知金字塔特征提取机制用于多尺度高级特征图以捕获丰富的上下文特征,通道注意机制和空间注意机制分别应用于金字塔特征提取图和低级特征图,两者融合以检测显着区域,然后增加边缘保留损失以获得显着区域和背景之间的准确边界,即引导网络在边界定位中学习更详细的信息,使超分辨率图像复原效果更好的同时更关注前景目标。同时本文使用二阶退化模型来较好的模拟真实世界中图像的复杂退化过程,使用纯合成数据训练超分网络模型。广泛的实验结果表明,本文提出的模型能够还原大多数真实世界的图像,且与现有模型相比具有更好的主观视觉效果,客观评价指标也证明文章所提出方法的有效性和优越性。
Image super-resolution reconstruction is a technology that obtains corresponding high-resolution images through software or hardware methods based on existing low-resolution images. This paper is based on the generation of confrontation networks, and on the basis of existing research, in order to solve the problem that the existing methods cannot well recover the low-resolution images with unknown complex degradation factors and highlight the foreground, the pyramid feature attention mechanism is introduced into the pure synthesis In the data-trained image blind super-resolution field, a second-order degradation process is used to simulate actual degradation. Specifically, this paper uses the pyramid feature attention mechanism to enhance high-level context features and low-level spatial structure features. Among them, the context-aware pyramid feature extraction mechanism is used in multi-scale high-level feature maps to capture rich contextual features. The channel attention mechanism and spatial attention mechanism are respectively applied to the pyramid feature extraction map and the low-level feature map. The two are fused to detect salient areas, and then Increasing the edge preservation loss to obtain the accurate boundary between the salient area and the background, that is, guiding the network to learn more detailed information in the boundary positioning, so that the super-resolution image restoration effect is better, and the foreground target is paid more attention to. At the same time, this paper uses the second-order degradation model to better simulate the complex degradation process of the image in the real world, and uses pure synthetic data to train the hyperdivision network model. Extensive experimental results show that the model proposed in this article can restore most real-world images, and has better subjective visual effects than existing models. The objective evaluation indicators also prove the effectiveness and superiority of the method proposed in this article.
邱宇、段鹏瑞
电子技术应用
图像超分辨率重建生成对抗网络金字塔特征注意机制图像退化模型
Image super-resolution reconstructionGenerative adversarial networksPyramid feature attention mechanismImage degradation model
邱宇,段鹏瑞.基于特征注意力机制的图像超分辨率重建[EB/OL].(2021-12-28)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202112-93.点此复制
评论