时序数据挖掘概述
Survey on Time Series Mining
时间序列相似搜索由于其在许多领域广阔的应用前景,例如:DNA序列分析、金融数据分析、传感器网络监控、移动对象跟踪以及运动捕获等领域,一直是研究界所关注的热点。它被认为是未来最有前景的技术之一,同时涌现出大量高水平的研究成果。文章综述了时序相似搜索技术的研究现状和进展,提出了两个研究阶段:一般化的时序相似搜索研究以及深入地广泛领域的时序相似搜索研究,并对其基本技术进行了概述。然后, 针对序列模式搜索, 相关性搜索, 时序聚类和分类, 以及时序异常检测等方面, 并结合时序的应用背景进行了综述. 所有上述技术通过对比,其正面和反面都被深入分析。最后指出了存在的问题和未来研究的方向。
ime series similarity search is always a hot research topic owing to its wide application prospects in many domains, such as DNA sequence analysis, financial data analysis, sensor network monitoring, moving object tracking and motion capture, etc. It is regarded as one of the most promising technology in the future and considerable research achievements have emerged. The paper provides an overview of research progress in the field. It proposes two research phases including general stage and deep stage, and then elaborates the basic technologies. Then, it surveys data mining of time series combined with their background, which include sequence pattern discovery, correlation analysis of time series, clustering and classification of time series, and time series outlier detecting, etc. All above mentioned technologies, the pros and cons of the techniques are discussed by comparison. Finally, we outline the problems in current research and some future research issues.
冯玉才、李国徽、蒋涛、朱虹
NONE
时间序列相似搜索高效搜索方法子时间序列
time seriessimilarity searchefficient searching methodssubsequence
冯玉才,李国徽,蒋涛,朱虹.时序数据挖掘概述[EB/OL].(2009-04-15)[2025-08-30].http://www.paper.edu.cn/releasepaper/content/200904-519.点此复制
评论