|国家预印本平台
首页|Lempel-Ziv Networks

Lempel-Ziv Networks

Lempel-Ziv Networks

来源:Arxiv_logoArxiv
英文摘要

Sequence processing has long been a central area of machine learning research. Recurrent neural nets have been successful in processing sequences for a number of tasks; however, they are known to be both ineffective and computationally expensive when applied to very long sequences. Compression-based methods have demonstrated more robustness when processing such sequences -- in particular, an approach pairing the Lempel-Ziv Jaccard Distance (LZJD) with the k-Nearest Neighbor algorithm has shown promise on long sequence problems (up to $T=200,000,000$ steps) involving malware classification. Unfortunately, use of LZJD is limited to discrete domains. To extend the benefits of LZJD to a continuous domain, we investigate the effectiveness of a deep-learning analog of the algorithm, the Lempel-Ziv Network. While we achieve successful proof of concept, we are unable to improve meaningfully on the performance of a standard LSTM across a variety of datasets and sequence processing tasks. In addition to presenting this negative result, our work highlights the problem of sub-par baseline tuning in newer research areas.

Rebecca Saul、James Holt、John Hurwitz、Tim Oates、Edward Raff、Mohammad Mahmudul Alam

计算技术、计算机技术

Rebecca Saul,James Holt,John Hurwitz,Tim Oates,Edward Raff,Mohammad Mahmudul Alam.Lempel-Ziv Networks[EB/OL].(2022-11-23)[2025-05-12].https://arxiv.org/abs/2211.13250.点此复制

评论