基于差分隐私的说话人匿名化方法
Speaker anonymization method based on differential privacy
语音中包含的说话人信息是一种可识别性的生物模板,攻击者可以通过攻击行为将其中包含的未加以保护的用户隐私信息进行盗取。本研究针对在保护语音隐私性的同时保持语音的可用性方向,基于语音隐私挑战赛的基线方法与广义差分隐私中的隐私度量方法,提出了一种基于差分隐私的说话人匿名化方法。该方法将目标语音进行拆分后,针对说话人特征向量进行差分隐私,最后合成匿名化语音。实验结果表示,经过该方法匿名化后的语音不仅能够提高语音的隐私性,还在自然度和可理解性方面依然保持较高水平,能够完成语音方面的各种下游任务。
he speaker information contained in the voice is an identifiable biological template, which can be used by attackers to steal the unprotected user privacy information. This paper proposes a speaker anonymization method based on the baseline method of the VoicePrivacy Challenge and the privacy metric method in generalized differential privacy to protect the voice privacy while maintaining the voice availability. This method decomposes the target speech, uses differential privacy method to perturb the speaker feature vector, and finally synthesizes the anonymized speech. The experimental results show that the anonymized speech can not only improve the privacy of speech, but also maintain a high level of naturalness and intelligibility, and can complete various downstream tasks in speech.
彭海朋、尉立雯
通信
信息安全隐私保护说话人匿名化差分隐私
information securityprivacy protectionspeaker anonymationdifferential privacy
彭海朋,尉立雯.基于差分隐私的说话人匿名化方法[EB/OL].(2024-03-18)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202403-219.点此复制
评论