|国家预印本平台
首页|Sensorimotor functional connectivity in unilateral cerebral palsy: influence of corticospinal tract wiring pattern and clinical correlates

Sensorimotor functional connectivity in unilateral cerebral palsy: influence of corticospinal tract wiring pattern and clinical correlates

Sensorimotor functional connectivity in unilateral cerebral palsy: influence of corticospinal tract wiring pattern and clinical correlates

来源:bioRxiv_logobioRxiv
英文摘要

ABSTRACT In children with unilateral cerebral palsy (uCP), the corticospinal tract (CST) wiring patterns may differ (contralateral, ipsilateral or bilateral), partially determining motor deficits. However, the impact of such CST wiring on functional connectivity remains unknown. Here, we explored differences in functional connectivity of the resting-state sensorimotor network in 26 uCP with periventricular white matter lesions (mean age (SD): 12.87m (±4.5), CST wiring: 9 contralateral, 9 ipsilateral, 6 bilateral) compared to 60 healthy controls (mean age (SD): 14.54 (±4.8)), and between CST wiring patterns. Functional connectivity from each M1 to three bilateral sensorimotor regions of interest (primary sensory cortex, dorsal and ventral premotor cortex) and the supplementary motor area was compared between groups (healthy controls vs. uCP; and healthy controls vs. each CST wiring group). Results from the seed-to-voxel analyses from bilateral M1 were compared between groups. Additionally, relations with upper limb motor deficits were explored. Aberrant sensorimotor functional connectivity seemed to be CST-dependent rather than specific from all the uCP population: in the dominant hemisphere, the contralateral CST group showed increased connectivity between M1 and premotor cortices, whereas the bilateral CST group showed higher connectivity between M1 and somatosensory association areas. These results suggest that functional connectivity of the sensorimotor network is CST wiring-dependent, although the impact on upper limb function remains unclear.

Uyttebroeck Anne、Simon-Martinez Cristina、Jaspers Ellen、Balsters Joshua、Alaerts Kaat、Blommaert Jeroen、Feys Hilde、Klingels Katrijn、Mailleux Lisa、Wenderoth Nicole、Amant Fr¨|d¨|ric、Ortibus Els、Sleurs Charlotte

KU Leuven Department of OncologyKU Leuven Department of Rehabilitation SciencesNeural Control of Movement Lab, Department of Health Sciences and TechnologyDepartment of Psychology, Royal Holloway University of LondonKU Leuven Department of Rehabilitation SciencesKU Leuven Department of OncologyKU Leuven Department of Rehabilitation SciencesKU Leuven Department of Rehabilitation Sciences||Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt UniversityKU Leuven Department of Rehabilitation SciencesNeural Control of Movement Lab, Department of Health Sciences and TechnologyKU Leuven Department of Oncology||Centre for Gynaecologic Oncology||Centre for Gynaecologic Oncology, Amsterdam University Medical CentresKU Leuven Department of Development and RegenerationKU Leuven Department of Oncology

10.1101/515866

神经病学、精神病学基础医学临床医学

cerebral palsyfunctional neuroimagingpaediatricssensorimotor cortexupper extremity

Uyttebroeck Anne,Simon-Martinez Cristina,Jaspers Ellen,Balsters Joshua,Alaerts Kaat,Blommaert Jeroen,Feys Hilde,Klingels Katrijn,Mailleux Lisa,Wenderoth Nicole,Amant Fr¨|d¨|ric,Ortibus Els,Sleurs Charlotte.Sensorimotor functional connectivity in unilateral cerebral palsy: influence of corticospinal tract wiring pattern and clinical correlates[EB/OL].(2025-03-28)[2025-05-07].https://www.biorxiv.org/content/10.1101/515866.点此复制

评论