分数阶微分方程边值问题解的存在性
he Existence of Solution for Boundary Value Problem of Nonliner Fractional Differential Equation
近几年来分数阶微分方程在工程,科技,经济等众多领域都有重要应用研究受到越来越多的关注.本文讨论了非线性分数阶微分方程两点边值问题,其导数是标准的型Riemann-Liouville分数阶导数,构造适当的Banach空间,利用Schauder不动点定理证明其解的存在性
In recent years, fractional differential equations in engineering, technological, economic and many other important areas of application are being more and more attention.This paper discusses problems of two-point Boundary Value of the nonlinear fractional differential equation whose derivative is Riemann-Liouville fractional derivative, constructs proper Banach space and proves the existence of its solutions using Schauder fixed point theorem.
王刚、朱思念、郑婷
数学
分数阶微分方程边值问题Banach空间不动点定理
fractional differential equationboundary value problemspacefixed point theorem
王刚,朱思念,郑婷.分数阶微分方程边值问题解的存在性[EB/OL].(2010-09-15)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201009-333.点此复制
评论