|国家预印本平台
首页|量子遗传算法优化RBF神经网络的MIMO-OFDM信号检测研究

量子遗传算法优化RBF神经网络的MIMO-OFDM信号检测研究

Research of MIMO-OFDM Detection Based on RBF neural network optimized by Quantum Genetic Algorithm

中文摘要英文摘要

信号的最优检测在常规条件下是一NP难解问题,本文针对RBF(径向基函数)神经网络算法易陷入局部极值和简单遗传算法收敛速度慢的问题,提出了将遗传算法与神经网络相结合,用遗传算法优化神经网络初始值,并在遗传算法优化神经网络时采用量子计算操作。将QGA(量子遗传算法)优化RBF神经网络算法应用于MIMO-OFDM系统信号检测中,由于QGA检测给RBF网络检测提供了较好的初始值,故能够使RBF网络快速收敛到最优解,避免了由初始值的随机选取而带来的检测误码。实验结果表明该方法能够有效地提高系统的信号检测性能,降低误码率。

he optimal solution of signal detection is a NP(Non-deterministic Polynomial-time hard)problem. Aimed at the problems that RBF(Radial Basis Function) neural network is prone to the local optimum and simple genetic algorithm has the shortcoming of slow convergence, it shows a way that combines neural network with genetic algorithm. It makes use of genetic algorithm to optimize the initial data of the neural network., Quantum computation operation is presented in the course of optimization. And the algorithm is applied into the MIMO-OFDM detection systems. Using this algorithm, the output of detector by the QGA as the input of detector by the RBF neural network to avoid the bit -error rate for selecting initial data randomly and improve further the detection property. The result of the experiments shows the method is good for the improvement of the detection rate, and reduction of bit -error rate.

周敏、郑宝玉、李飞

通信无线通信计算技术、计算机技术

多输入多输出正交频分复用量子遗传算法RBF神经网络信号检测

MIMOOFDMQuantum Genetic AlgorithmRBF neural networkSignal Detection

周敏,郑宝玉,李飞.量子遗传算法优化RBF神经网络的MIMO-OFDM信号检测研究[EB/OL].(2010-01-26)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201001-1088.点此复制

评论