|国家预印本平台
首页|无零点亚纯函数族的正规与拟正规定则

无零点亚纯函数族的正规与拟正规定则

Normality and Quasinormality Criteria of Zero-free Meromorphic Functions

中文摘要英文摘要

设$k,K$为正整数,φ(z)(otequiv0)$为解析函数,$mathcal{F}$为在区域$D$内没有零点的亚纯函数族, 每个函数极点均为重级. 如果对任意的$finmathcal{F}$, $f^{(k)}(z)-φ(z)至多有$K$个不同零点, 则$mathcal{F}$在$D$内为至多$u$阶的拟正规族,这里$u=[rac{K}{k+2}]$为不超过$rac{K}{k+2}$的最大整数. 特别地, 若$K=k+1$, 则$cal F$在$D$内正规.

Let $k,K$ be positive integers, φ(z)(otequiv0)$ be ananalytic function, and $mathcal{F}$ be a family of zero-free meromorphicfunctions on a domain $D$, all of whose poles are multiple. If for each$finmathcal{F}$, $f^{(k)}(z)-φ(z)$ has at most $K$ distinctzeros(ignoring multiplicity), then $mathcal{F}$ is quasinormalof order at most $u$ on $D$, where $u=[rac{K}{k+2}]$ is equal tothe largest integer not exceeding $rac{K}{k+2}$. In particular, if $K=k+1$, then $cal F$ is normal on $D$.

徐焱、程春暖

数学

亚纯函数正规族拟正规族

meromorphic function normal family quasinormal family.

徐焱,程春暖.无零点亚纯函数族的正规与拟正规定则[EB/OL].(2015-11-30)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201511-842.点此复制

评论