基于梯度图及 Hausdorff 距离的人脸识别
Robust face recognition using Gradient Map
本文提出了一种新的基于梯度图像及 PHD (Partial Hausdorff Distance) 距离度量 的人脸识别方法。首先,为了克服光照变化的影响,人脸图像被转换为梯度图像 (Gradient Map),然后,引入 Hausdorff 距离度量用于计算梯度图像之间的距离。实 验数据显示,该度量方法用于人脸识别是合适的。我们还可以看到,该方法对于光照 变化、较小范围内的姿态变化及表情变化有较大的橹棒性。最后,给出了在 AR 及 FERET 人脸库上测试的识别率,及与 Edge Map (EM) 及 Line segment Map (LEM)算 法比较的结果。
gradient-based face recognition method using Partial Hausdorff Distance measure (PHD) is proposed in this paper. First, in order to achieve a performance independent of lighting conditions, the image is transformed into a Gradient Map (GM). And then, Hausdorff distance measure is introduced to calculate the dissimilarity between two Gradient Maps. The experimental data show that the measure is suitable for face recognition. As we can see later, this distance measure is robust to lighting variations, slight pose differences and expression changes in face images. At last, recognition accuracy is given tested on AR and FERET databases, and comparisons with EM (Edge Map) and Line segment Edge Map (LEM) approaches are also presented.
陈锻生、池静
计算技术、计算机技术
人脸识别,Hausdorff 距离,梯度图像
Face recognitionHausdorff distanceGradient Map
陈锻生,池静.基于梯度图及 Hausdorff 距离的人脸识别[EB/OL].(2007-05-24)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200705-398.点此复制
评论