|国家预印本平台
首页|一种多特征值的信号调制识别方法

一种多特征值的信号调制识别方法

multi-method of signal modulation characteristic value identification

中文摘要英文摘要

在信号无线领域,信号自动调制识别一直是一个重要的研究课题。基于信号时域统计特性和频域特征参数的向量模型的识别已经成为当前识别的主题。同时人工神经网络的应用也为信号自动调制识别创造了良好的识别环境,当前人工神经网络已经成功的应用于不同数字通带信号的调至识别当中。本文主要提出了一种混合神经网络算法来识别2ASK、4ASK、2FSK、4FSK、BPSK 、QPSK、8QAM、16QAM,其中包括提出了七个特征参数。实验结果表明,与传统方法相比,本文设计的网络模型和训练算法收敛速度,识别率提高。本文采用LM算法来对神经网络进行训练,提高了神经网络的收敛速度。同时对七个特征参数的仿真分析表明,该方法具有很高的识别率,最后通过仿真表明在信噪比小于5dB时,识别率任然可以达到80%以上。

he modulation recognition technology of communication signals has been an important theme of wireless communication. Based on the parameters abstraction of time domain statistical feature and fractal feature, the feature vector samples is formed. The artificial neural network is the research hot spots of pattern recognition. An artificial neural network is proposed for an automatic recognition of different types of digital pass-band modulation. The feed-forward networks are trained to recognize 2ASK、4ASK、2FSK、4FSK、BPSK 、QPSK、8QAM、16QAM signals with better generalization as well as an addition of a new statistical features set. Performance of the processor in the presence of additive white Gaussian noise (AWGN) is simulated. The experiments show that comparing with traditional methods the network model and training algorithm designed in this paper is improved much in convergence speed, training time and recognition ratio. Simulations show satisfactory results even with low value, e.g. 80% success rate at 5dB SNR.

邓翠艳、贾敏智

无线通信通信电子对抗

调制识别高阶累积量LM算法神经网络

modulation recognitionorder cumulantsLMneural network

邓翠艳,贾敏智.一种多特征值的信号调制识别方法[EB/OL].(2011-09-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201109-353.点此复制

评论