|国家预印本平台
首页|On the Robustness of Global Feature Effect Explanations

On the Robustness of Global Feature Effect Explanations

On the Robustness of Global Feature Effect Explanations

来源:Arxiv_logoArxiv
英文摘要

We study the robustness of global post-hoc explanations for predictive models trained on tabular data. Effects of predictor features in black-box supervised learning are an essential diagnostic tool for model debugging and scientific discovery in applied sciences. However, how vulnerable they are to data and model perturbations remains an open research question. We introduce several theoretical bounds for evaluating the robustness of partial dependence plots and accumulated local effects. Our experimental results with synthetic and real-world datasets quantify the gap between the best and worst-case scenarios of (mis)interpreting machine learning predictions globally.

Hubert Baniecki、Giuseppe Casalicchio、Bernd Bischl、Przemyslaw Biecek

10.1007/978-3-031-70344-7_8

计算技术、计算机技术

Hubert Baniecki,Giuseppe Casalicchio,Bernd Bischl,Przemyslaw Biecek.On the Robustness of Global Feature Effect Explanations[EB/OL].(2025-07-28)[2025-08-04].https://arxiv.org/abs/2406.09069.点此复制

评论