基于结构信息的图像分类算法
Image classification algorithm based on structural information
Bag of Words算法是将描述物体局部特征的视觉单词整理在一起,形成一个词袋模型。它只考虑了物体的局部特征,完全不考虑物体的结构信息。本文提出的方法是在考虑结构信息的基础上进行图像分类。算法是依据广义Hough变换的思想来分析物体的结构信息。首先,利用广义Hough变换获得对物体中心位置投票的测试图像中物体局部特征的结构信息。然后,我们根据投票点的分散度分析模板大小,并优化的投票结果。实验结果表明,我们的方法优于不考虑结构信息,只利用底层特征分类的方法。
Bag of words algorithm is to integrate visual words, described the local features of the object, together to form a bag model. It does not consider the structural information of the object, considering only the local features. This paper presents an image classification algorithm based on structural information. Algorithm adds the structural information of the object according to the ideas of generalized Hough transform. We use the structural information on the local features of the test image with generalized Hough transform and get the possible position of the center of the object. Then, we have to analyze the template size on the basis of the dispersion degree of the voting points, and finally optimize the voting results. Experimental results demonstrate that our proposed method is superior to the method which does not consider the structural information and uses the low-level features to classification.
陈宇峰、李飞飞、闫高洁、杨志中
计算技术、计算机技术
图像分类Bag of Words结构信息广义Hough变换
Image classificationBag of wordsstructural informationgeneralized Hough transform
陈宇峰,李飞飞,闫高洁,杨志中.基于结构信息的图像分类算法[EB/OL].(2012-11-16)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201211-281.点此复制
评论