双峰映射符号动力学中可重整纽结的普适形式
Universal Form of Renormalizable Knots in Symbolic Dynamics of Bimodal Maps
本文确立了双峰映射中纽结理论与符号动力学之间的普适关系。当映射的符号序列表示为简单纽结时,容易发现可重整序列的纽结由成束的流构成,这些流相互平行、反平行或单次折叠。可重整纽结的生成可通过几何操作或代数方法计算得到。特别要指出的是,这种生成方法独立于传统符号动力学的星花积。我们以列表形式给出了周期6以下的一些例子。
he universal relation between knot theory and symbolic dynamics is established in bimodal maps in this paper. When symbolic sequences of maps are expressed as simple knots, it is easy to find that knots for renormalizable sequences are constructed of bunches of flows. They are parallel, inverse parallel or single-folding. The generation of renormalizable knots can be operated easily in geometry or be calculated by algebraic method. Especially, it is independent of traditional star product of symbolic dynamics. We present some examples and list them in a table with period not beyond 6.
曹克非、彭守礼、许传云、高文
数学
符号动力学纽结重整化双峰映射
Symbolic dynamicsKnotRenormalizationBimodal maps
曹克非,彭守礼,许传云,高文.双峰映射符号动力学中可重整纽结的普适形式[EB/OL].(2009-01-22)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/200901-1087.点此复制
评论