|国家预印本平台
首页|Johnson图的割集和哈密尔顿圈

Johnson图的割集和哈密尔顿圈

utsets and Hamiltonian cycles of Johnson graphs

中文摘要英文摘要

对于图G的一个顶点v,v点的一个局部割是大小为 d(v),由顶点x或者边vx组成的集合,其中x是v的邻点。图G的一个直径增长集定义为一个集合U,且满足图G-U的直径大于图G的直径。在本文中,我们首先证明了除J(4,2)外,Johnson图J(n,k)的每一个最小广义割都是一个局部割。接着我们说明了除J(n,2)和 J(6,3)外,J(n,k)的每一个直径增长集是局部割的一个子集。最后,我们得到当n大于等于3时,J(n,k) 有一个哈密尔顿圈.

For a vertex $v$ in a graph $G$, a local cut at $v$ is a set of size $d(v)$ consisting of the vertex $x$ or the edge $vx$ for each $xin N(v)$. A diameter-increasing set in a graph $G$ is a set $U$ of vertices and edges such that the diameter of $G-U$ exceeds the diameter of $G$. In the present work, we first prove that every smallest generalized cut of Johnson graph $J(n,k)$ except $J(4,2)$ is a local cut. Then we show that every smallest diameter-increasing set in $J(n,k)$ except $J(n,2)$ and $J(6,3)$ is a subset of a local cut. Finally, we obtain that $J(n,k)$ has a Hamiltonian cycle for $n\\\\\\\\\\\\\\\\geq 3$.

张和平、李秋丽、宁万涛

数学

Johnson图广义割直径哈密尔顿圈

Johnson graphGeneralized cutDiameterHamiltonian cycle

张和平,李秋丽,宁万涛.Johnson图的割集和哈密尔顿圈[EB/OL].(2008-03-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200803-439.点此复制

评论