|国家预印本平台
首页|基于支持向量机的用户行为聚类分析

基于支持向量机的用户行为聚类分析

ustomer Behavior Clustering Using SVM

中文摘要英文摘要

为了给用户提供个性化的网络服务,就必须仔细分析用户的行为。本文从用户的网络访问行为中提取用于分类的特征,并通过基于支持向量机的聚类方法,从用户访问的网站中提取出新闻类网站、资源共享类网站和通讯类网站,从而为用户提供更好的服务打下了坚实的基础。

In order to supply better service for network customers, deeply analyze customers' behavior is required first. This paper extracts three types of characteristics from customers' network behavior and divided the behavior in to different categories, such as browsing news, download shared resources and network communications etc. This paper uses support vector machine to perform clustering, because this method is proved as fast and valid, especially in the situation of small datasets. After acquired the analyze results, we can make our application and services more personalized and easier to use.

杨仲迎

计算技术、计算机技术

计算机应用用户行为分析支持向量机聚类

omputer ApplicationsComputer application SVMcustomer behavior analyzeClustering

杨仲迎.基于支持向量机的用户行为聚类分析[EB/OL].(2011-05-13)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201105-334.点此复制

评论