|国家预印本平台
首页|安卓恶意应用检测中的特征研究与应用

安卓恶意应用检测中的特征研究与应用

he research and application of features in the Android malware detection

中文摘要英文摘要

近年来, 安卓(Android)平台以其良好的用户体验和开放性等特点得到迅速发展,但与此同时,该平台也成为了恶意攻击者的主要目标。安卓平台的应用类别趋于多样,恶意应用行为趋于复杂,已成为应用市场管理和恶意应用检测面临的主要挑战。针对不断恶化的安卓安全形势,本文从恶意应用检测的角度,首次从三个方面分析总结了恶意应用检测可能用到特征类型以及近期相关研究中使用的部分数据集,这些工作可为恶意应用检测的后续研究工作提供有效的支持。本文使用116,028个安卓样本,共7个类型的静态特征结合两种机器学习算法进行了大规模的安卓恶意应用检测的应用并取得了较为理想的结果,最高分类正确率达99.38%,误报率0.03%。

In recent years, Android platform has a rapid development because of its superior customer experience and openness. Meanwhile the platform has become the primary target of malicious attackers. It has become the major challenge of Android market management and malicious application detection that the category of application from Android platform tend to be diverse and the behavior of malicious application tend to be complex. For the continued deterioration of the Android security situation, this paper analysis the available features in malicious application detection and some related datasets. The work can provide effective support for subsequent follow-up study about the features in malicious applications detection. So the research of automatic classification of Android applications is of great significance. We use two machine learning algorithms to detect malicious applications with 116,028 Android applications and 7 kinds of static features. After a great deal of experiments, our detection accuracy rate reached 99.38% with FPR 0.03%.

王伟、马君丽

计算技术、计算机技术

移动安全安卓恶意应用检测特征

Mobile Security Android Malware Detection Features

王伟,马君丽.安卓恶意应用检测中的特征研究与应用[EB/OL].(2016-01-12)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201601-272.点此复制

评论